Method of lines for reaction-diffusion systems admitting invariant regions

Authors

  • Niels van der Meer Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Department of Mathematics, Trojanova 13, 120 00 Prague, Czech Republic
  • Michal Beneš Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Department of Mathematics, Trojanova 13, 120 00 Prague, Czech Republic https://orcid.org/0000-0002-7171-978X

DOI:

https://doi.org/10.14311/AP.2025.65.0566

Keywords:

reaction-diffusion dynamics, finite-difference method, method of lines, invariant regions

Abstract

Systems of nonlinear reaction-diffusion equations arise in various fields, including chemistry, population dynamics, pattern formation, phase transitions, and image processing. With the exception of few analytically solvable cases, they are treated by numerical methods carefully adjusted to capture the nonlinear phenomena exhibited by the solution. This article shows how to extend the notion of invariant regions generalizing the maximum principle for diffusion equations to the finite-difference method of lines, and how to consequently prove convergence of the underlying numerical scheme. We also provide two particular examples of reaction-diffusion systems in one-dimensional space with a diagonal diffusion operator, which are solved by the presented numerical method.

Downloads

Download data is not yet available.

References

J. Smoller. Shock waves and reaction – Diffusion equations. Springer, New York, 2nd edn., 1994. https://doi.org/10.1007/978-1-4612-0873-0

M. Holodniok, M. Kubíček, M. Marek. Metody analýzy nelineárních dynamických modelů [In Czech; Methods of the analysis of nonlinear dynamical models]. Academia, Prague, 1986.

R. Temam. Infinite-dimensional dynamical systems in mechanics and physics. Springer, New York, 1988. ISBN 0-387-96638-2.

J. D. Murray. Mathematical biology. Springer, Berlin, Heidelberg, 1993. https://doi.org/10.1007/978-3-662-08542-4

J. Kantner, M. Beneš. Mathematical model of signal propagation in excitable media. Discrete and Continuous Dynamical Systems – Series S 14(3):935–951, 2021. https://doi.org/10.3934/dcdss.2020382

F. Verhulst. Nonlinear differential equations and dynamical systems. Springer, Berlin, Heidelberg, 1996. https://doi.org/10.1007/978-3-642-61453-8

T. Ohta, M. Mimura, R. Kobayashi. Higherdimensional localized patterns in excitable media. Physica D: Nonlinear Phenomena 34(1):115–144, 1989. https://doi.org/10.1016/0167-2789(89)90230-3

O. Penrose, P. C. Fife. On the relation between the standard phase-field model and a “thermodynamically consistent” phase-field model. Physica D: Nonlinear Phenomena 69(1):107–113, 1993. https://doi.org/10.1016/0167-2789(93)90183-2

M. Beneš. Numerical solution of phase-field equations with a gradient coupling term. In W. Jäger, J. Nečas, O. John, et al. (eds.), Partial Differential Equations – Theory and Numerical Solution, pp. 25–33. New York, 2000.

M. Beneš. Mathematical analysis of phase-field equations with numerically efficient coupling terms. Interfaces and Free Boundaries 3(2):201–212, 2001. https://doi.org/10.4171/IFB/38

M. Beneš, V. Chalupecký, K. Mikula. Geometrical image segmentation by the Allen-Cahn equation. Applied Numerical Mathematics 51(2–3):187–205, 2004. https://doi.org/10.1016/j.apnum.2004.05.001

D. Hoff. Stability and convergence of finite difference methods for systems of nonlinear reaction-diffusion equations. SIAM Journal on Numerical Analysis 15(6):1161–1177, 1978. https://doi.org/10.1137/0715077

J. Mach, M. Beneš, P. Strachota. Nonlinear Galerkin finite element method applied to the system of reactiondiffusion equations in one space dimension. Computers & Mathematics with Applications 73(9):2053–2065, 2017. https://doi.org/10.1016/j.camwa.2017.02.032

M. Frittelli, A. Madzvamuse, I. Sgura, C. Venkataraman. Preserving invariance properties of reaction–diffusion systems on stationary surfaces. IMA Journal of Numerical Analysis 39(1):235–270, 2017. https://doi.org/10.1093/imanum/drx058

J. Šembera, M. Beneš. Nonlinear Galerkin method for reaction–diffusion systems admitting invariant regions. Journal of Computational and Applied Mathematics 136(1–2):163–176, 2001. https://doi.org/10.1016/S0377-0427(00)00582-3

M. Kolář. Computational studies of reaction-diffusion systems by nonlinear Galerkin method. American Journal of Computational Mathematics 3(2):137–146, 2013. https://doi.org/10.4236/ajcm.2013.32022

J. Mach. Application of the nonlinear Galerkin FEM method to the numerical solution of a reaction-diffusion system in two dimensions. RIMS Kokyuroku Bessatsu B35:95–113, 2012.

M. Beneš, K. Mikula, T. Oberhuber, D. Ševčovič. Comparison study for level set and direct Lagrangian methods for computing Willmore flow of closed planar curves. Computing and Visualization in Science 12(6):307–317, 2009. https://doi.org/10.1007/s00791-008-0112-2

P. Pauš. Numerical simulation of dislocation dynamics. In M. Vajsáblová, P. Struk (eds.), Proceedings of Slovak–Austrian Congress, Magia, pp. 45–52. Bratislava, 2007. ISBN 978-80-227-2796-9.

M. Kolář, D. Ševčovič. Evolution of multiple closed knotted curves in space. In P. Frolkovič, K. Mikula, D. Ševčovič (eds.), Proceedings of the Algoritmy 2024 Conference, pp. 129–138. Bratislava, 2024.

M. Beneš. Phase-field model of microstructure growth in solidification of pure substances. Ph.D. thesis, Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, 1997.

M. Beneš. Analysis of equations in the phase field model. In Z. Došlá, J. Kuben, J. Vosmanský (eds.), Proceedings of Equadiff 9, pp. 17–35. Brno, 1998. [2025-06-30]. https://dml.cz/handle/10338.dmlcz/700304

L. S. Pontryagin. Ordinary differential equations. Addisson Wesley Publishing, Palo Alto, 1962.

T. Roubíček. A generalization of the Lions-Temam compact imbedding theorem. Časopis pro pěstování matematiky 115(4):338–342, 1990. [2025-06-30]. http://eudml.org/doc/21776

J.-L. Lions. Quelques méthodes de résolution des problèmes aux limites non linéaires [In French; Several solution methods of nonlinear boundary-value problems]. Dunod, Gauthiers-Villars, Paris, 1969.

R. Temam. Navier-Stokes equations, theory and numerical analysis. North-Holland, Amsterdam, 1979.

Y. Ji, J. Shen, X. Mao. Pattern formation of Brusselator in the reaction-diffusion system. Discrete and Continuous Dynamical Systems – Series S 16(3–4):434–459, 2023. https://doi.org/10.3934/dcdss.2022103

G. Gambino, V. Giunta, M. C. Lombardo, G. Rubino. Cross-diffusion effects on stationary pattern formation in the FitzHugh-Nagumo model. Discrete and Continuous Dynamical Systems – Series B 27(12):7783–7816, 2022. https://doi.org/10.3934/dcdsb.2022063

V. Thomée, L. B. Wahlbin. On the existence of maximum principles in parabolic finite element equations. Mathematics of Computation 77(261):11–19, 2008. https://doi.org/10.1090/S0025-5718-07-02021-2

A. A. Samarskii, V. B. Andreev. Raznostnyje metody dlja ellipticeskich uravnenij [In Russian; Difference methods for elliptic equations]. Nauka, Moscow, 1976.

A. A. Samarskii. Teorija raznostnych schem [In Russian; Theory of difference schemes]. Nauka, Moscow, 1977.

D. Žurek. Electromechanical model of excitable medium. Master’s thesis, Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Prague, 2024.

I. Prigogine, R. Lefever. Symmetry breaking instabilities in dissipative systems. II. The Journal of Chemical Physics 48(4):1695–1700, 1968. https://doi.org/10.1063/1.1668896

M. Marek, I. Schreiber. Chaotic behaviour of deterministic dissipative systems, vol. 1. Cambridge University Press & Academia Prague, 1991. https://doi.org/10.1017/CBO9780511608162

R. FitzHugh. Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal 1(6):445–466, 1961. https://doi.org/10.1016/S0006-3495(61)86902-6

J. Nagumo, S. Arimoto, S. Yoshizawa. An active pulse transmission line simulating nerve axon. Proceedings of the IRE 50(10):2061–2070, 1962. https://doi.org/10.1109/JRPROC.1962.288235

S.-I. Ei, R. Ikota, M. Mimura. Segregating partition problem in competition-diffusion systems. Interfaces and Free Boundaries 1(1):57–80, 1999. https://doi.org/10.4171/IFB/4

G. Dziuk. Convergence of a semi-discrete scheme for the curve shortening flow. Mathematical Models and Methods in Applied Sciences 4(4):589–606, 1994. https://doi.org/10.1142/S0218202594000339

G. Nicolis, I. Prigogine. Self-organisation in nonequilibrium systems. Wiley and Sons, New York, 1977.

P. Raschman, M. Kubíček, M. Marek. Concentration waves in reaction-diffusion systems. Scientific Papers of the Prague Institute of Chemical Technology K17:151–175, 1982.

M. Holodniok, P. Knedlík, M. Kubíček. Continuation of periodic solutions in parabolic partial differential equations. In T. Küpper, R. Seydel, H. Troger (eds.), Bifurcation: Analysis, Algorithms, Applications, pp. 122–130. Birkhäuser, Basel, 1987. https://doi.org/10.1007/978-3-0348-7241-6_13

L. Čížková-Eslerová. Numerická analýza dynamiky reakčně-difúzních rovnic Brusselátor [In Czech; Numerical analysis of dynamics of Brusselator reaction-diffusion equations]. Master’s thesis, Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Prague, 1996. https://doi.org/10.13140/RG.2.2.16452.37765

S. Kouachi. Global existence for some strongly coupled reaction-diffusion systems non-dissipative via invariant regions techniques. Tech. Rep. hal-01429082, HAL, Open Science, 2017. [2025-06-30]. https://hal.archives-ouvertes.fr/hal-01429082

S. M. Stoltz. Pattern formation in the Brusselator model of chemical reactions. Master’s thesis, University of Pretoria, Pretoria, 2016.

A. L. Hodgkin, A. F. Huxley, B. Katz. Measurement of current-voltage relations in the membrane of the giant axon of Loligo. The Journal of Physiology 116(4):424–448, 1952. https://doi.org/10.1113/jphysiol.1952.sp004716

J. Keener, J. Sneyd. Mathematical physiology. Springer, New York, 1998. https://doi.org/10.1007/b98841

B. Deng. The existence of infinitely many traveling front and back waves in the FitzHugh–Nagumo equations. SIAM Journal on Mathematical Analysis 22(6):1631–1650, 1991. https://doi.org/10.1137/0522102

J. Rauch, J. Smoller. Qualitative theory of the FitzHugh-Nagumo equations. Advances in Mathematics 27(1):12–24, 1978. https://doi.org/10.1016/0001-8708(78)90075-0

Downloads

Published

2025-11-07

Issue

Section

Prof. M. Havlíček Memorial Issue

How to Cite

van der Meer, N., & Beneš, M. (2025). Method of lines for reaction-diffusion systems admitting invariant regions. Acta Polytechnica, 65(5), 566-577. https://doi.org/10.14311/AP.2025.65.0566