Dirac fermion in a time-dependent spherical box
DOI:
https://doi.org/10.14311/AP.2025.65.0546Keywords:
Dirac equation, ball with time-dependent radius, dynamical confinement, Dirichlet boundary conditionAbstract
We consider a Dirac particle in a spherical box with a time-dependent radius. Analytical and numerical solutions of the time-dependent Dirac equation with time-dependent boundary (Dirichlet) conditions are obtained. Using the obtained solutions, physically observable characteristics of the dynamical confinement, such as the average kinetic energy (as a function of time) and average quantum force acting on the particle by the moving wall, are calculated. The trembling motion is analysed by computing the average coordinate of the Dirac particle as a function of time. The absence of the geometric phase is shown by direct calculation.
Downloads
References
T. O. Wehling, A. M. Black-Schaffer, A. V. Balatsky. Dirac materials. Advances in Physics 63(1):1–76, 2014. https://doi.org/10.1080/00018732.2014.927109
J. Cayssol. Introduction to Dirac materials and topological insulators. Comptes Rendus Physique 14(9–10):760–778, 2013. https://doi.org/10.1016/j.crhy.2013.09.012
M. Z. Hasan, C. L. Kane. Colloquium: Topological insulators. Reviews of Modern Physics 82(4):3045–3067, 2010. https://doi.org/10.1103/RevModPhys.82.3045
X.-L. Qi, S.-C. Zhang. Topological insulators and superconductors. Reviews of Modern Physics 83(4):1057–1110, 2011. https://doi.org/10.1103/RevModPhys.83.1057
C. W. J. Beenakker. Colloquium: Andreev reflection and Klein tunneling in graphene. Reviews of Modern Physics 80(4):1337–1354, 2008. https://doi.org/10.1103/RevModPhys.80.1337
J. M. Zeuner, N. K. Efremidis, R. Keil, et al. Optical analogues for massless Dirac particles and conical diffraction in one dimension. Reviews of Modern Physics 109(2):023602, 2012. https://doi.org/10.1103/PhysRevLett.109.023602
S. M. Barnett. Optical Dirac equation. New Journal of Physics 16(9):093008, 2014. https://doi.org/10.1088/1367-2630/16/9/093008
S. W. Doescher, M. H. Rice. Infinite square-well potential with a moving wall. American Journal of Physics 37(12):1246–1249, 1969. https://doi.org/10.1119/1.1975291
J. Dittrich, S. Rakhmanov, D. Matrasulov. Dirac particle under dynamical confinement: Fermi acceleration, trembling motion and quantum force. Physics Letters A 503:129408, 2024. https://doi.org/10.1016/j.physleta.2024.129408
V. V. Dodonov, V. I. Man’ko, D. E. Nikonov. Exact propagators for time-dependent Coulomb, delta and other potentials. Physics Letters A 162(5):359–364, 1992. https://doi.org/10.1016/0375-9601(92)90054-P
M. V. Berry, R. J. Mondragon. Neutrino billiards: Time-reversal symmetry-breaking without magnetic fields. Proceedings of the Royal Society of London A. Mathematical and Physical Sciences 412(1842):53–74, 1987. https://doi.org/10.1098/rspa.1987.0080
V. Alonso, S. D. Vincenzo, L. Mondino. On the boundary conditions for the Dirac equation. European Journal of Physics 18(5):315, 1997. https://doi.org/10.1088/0143-0807/18/5/001
V. Alonso, S. D. Vincenzo. General boundary conditions for a Dirac particle in a box and their non-relativistic limits. Journal of Physics A: Mathematical and General 30(24):8573, 1997. https://doi.org/10.1088/0305-4470/30/24/018
Z. A. Sobirov, D. Matrasulov, S. Ataev, H. Yusupov. Time dependent neutrino billiards. In G. Casati, D. Matrasulov (eds.), Complex Phenomena in Nanoscale Systems, pp. 215–221. Springer Netherlands, Dordrecht, 2009. https://doi.org/10.1007/978-90-481-3120-4_20
S. Rakhmanov, D. Matrasulov, V. I. Matveev. Quantum dynamics of a hydrogen-like atom in a time-dependent box: Non-adiabatic regime. The European Physical Journal D 72(10):177, 2018. https://doi.org/10.1140/epjd/e2018-90195-6
M.-Y. Song, Z.-Y. Li, H.-Y. Xu, et al. Quantization of massive Dirac billiards and unification of nonrelativistic and relativistic chiral quantum scars. Physical Review Research 1(3):033008, 2019. https://doi.org/10.1103/PhysRevResearch.1.033008
V. B. Beresteckii, E. M. Lipshitz, L. P. Pitaevskii. Reljativistskaja kvantovaja teoria. Cast I. [In Russian; Relativistic quantum theory I]. Nauka, Moscow, 1968.
J. Dittrich, P. Exner, P. Šeba. Dirac operators with a spherically symmetric δ-shell interaction. Journal of Mathematical Physics 30(12):2875–2882, 1989. https://doi.org/10.1063/1.528469
P. Pereshogin, P. Pronin. Effective Hamiltonian and Berry phase in a quantum mechanical system with time dependent boundary conditions. Physics Letters A 156(1):12–16, 1991. https://doi.org/10.1016/0375-9601(91)90117-Q
M. Holzmann. A note on the three dimensional Dirac operator with zigzag type boundary conditions. Complex Analysis and Operator Theory 15(3):47, 2021. https://doi.org/10.1007/s11785-021-01090-x
M. V. Berry. Quantal phase factors accompanying adiabatic changes. Proceedings of the Royal Society of London A. Mathematical and Physical Sciences 392(1802):45–57, 1984. https://doi.org/10.1098/rspa.1984.0023
M. Reed, B. Simon. Methods of modern mathematical physics. IV: Analysis of operators. Academic Press, San Diego, 1978.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Kuvonchbek Matchonov, Davron Matrasulov, Jaroslav Dittrich

This work is licensed under a Creative Commons Attribution 4.0 International License.


